公式一:$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+1)}$
利用公式一可得:
$$\sum_{k=1}^{n} \left( \frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n+1}$$
公式二:$\frac{1}{n(n+d)} = \frac{1}{d} \left( \frac{1}{n} - \frac{1}{n+d} \right)$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+2)}$
利用公式二可得:
$$\sum_{k=1}^{n} \frac{1}{2} \left( \frac{1}{k} - \frac{1}{k+2} \right) = \frac{1}{2} \left( 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right)$$
公式三:$\frac{1}{n^2-1} = \frac{1}{2} \left( \frac{1}{n-1} - \frac{1}{n+1} \right)$
示例:
求和 $\sum_{k=2}^{n} \frac{1}{k^2-1}$
利用公式三可得:
$$\sum_{k=2}^{n} \frac{1}{2} \left( \frac{1}{k-1} - \frac{1}{k+1} \right) = \frac{1}{2} \left( 1 - \frac{1}{n} - \frac{1}{n+1} \right)$$
公式四:$\frac{1}{n(n+2)} = \frac{1}{2} \left( \frac{1}{n} - \frac{1}{n+2} \right)$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+2)}$
利用公式四可得:
$$\sum_{k=1}^{n} \frac{1}{2} \left( \frac{1}{k} - \frac{1}{k+2} \right) = \frac{1}{2} \left( 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right)$$
公式五:$\frac{1}{n(n+3)} = \frac{1}{3} \left( \frac{1}{n} - \frac{1}{n+3} \right)$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+3)}$
利用公式五可得:
$$\sum_{k=1}^{n} \frac{1}{3} \left( \frac{1}{k} - \frac{1}{k+3} \right) = \frac{1}{3} \left( 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} \right)$$
公式六:$\frac{1}{n(n+d)} = \frac{1}{d} \left( \frac{1}{n} - \frac{1}{n+d} \right)$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+4)}$
利用公式六可得:
$$\sum_{k=1}^{n} \frac{1}{4} \left( \frac{1}{k} - \frac{1}{k+4} \right) = \frac{1}{4} \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} - \frac{1}{n+4} \right)$$
公式七:$\frac{1}{n^2-4} = \frac{1}{4} \left( \frac{1}{n-2} - \frac{1}{n+2} \right)$
示例:
求和 $\sum_{k=3}^{n} \frac{1}{k^2-4}$
利用公式七可得:
$$\sum_{k=3}^{n} \frac{1}{4} \left( \frac{1}{k-2} - \frac{1}{k+2} \right) = \frac{1}{4} \left( \frac{1}{1} + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right)$$
公式八:$\frac{1}{n(n+5)} = \frac{1}{5} \left( \frac{1}{n} - \frac{1}{n+5} \right)$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+5)}$
利用公式八可得:
$$\sum_{k=1}^{n} \frac{1}{5} \left( \frac{1}{k} - \frac{1}{k+5} \right) = \frac{1}{5} \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} - \frac{1}{n+4} - \frac{1}{n+5} \right)$$
公式九:$\frac{1}{n(n+6)} = \frac{1}{6} \left( \frac{1}{n} - \frac{1}{n+6} \right)$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+6)}$
利用公式九可得:
$$\sum_{k=1}^{n} \frac{1}{6} \left( \frac{1}{k} - \frac{1}{k+6} \right) = \frac{1}{6} \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} - \frac{1}{n+4} - \frac{1}{n+5} - \frac{1}{n+6} \right)$$
公式十:$\frac{1}{n(n+7)} = \frac{1}{7} \left( \frac{1}{n} - \frac{1}{n+7} \right)$
示例:
求和 $\sum_{k=1}^{n} \frac{1}{k(k+7)}$
利用公式十可得:
$$\sum_{k=1}^{n} \frac{1}{7} \left( \frac{1}{k} - \frac{1}{k+7} \right) = \frac{1}{7} \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3} - \frac{1}{n+4} - \frac{1}{n+5} - \frac{1}{n+6} - \frac{1}{n+7} \right)$$
以上便是裂项相消法中的十个基本公式及其实用示例。熟练掌握这些公式能够帮助我们在处理复杂数列求和问题时更加游刃有余。希望这些内容对大家的学习有所帮助!